How Does a Gen III Nuclear Plant Differ From a Gen II?

2022-06-10 22:48:50 By : Mr. Fay Wang

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

Nuclear power plants are generally classified by the generation (I, II, III, III+ and IV) of their reactors. Every next generation is more advanced in terms of safety, development and deployment.

Image Credit: Corona Borealis Studio/Shutterstock.com

A nuclear reactor is the heart of a nuclear power plant which is used to initiate and control nuclear fission or fusion reactions.

A nuclear power reactor generates and regulates energy by splitting or fusing atomic nuclei. The energy released is utilized to generate steam and generate electric power without the emission of greenhouse gases. Nuclear energy (fission) is roughly 8,000 times more efficient than fossil fuel energy.

With over 440 commercial nuclear power facilities worldwide, nuclear power remains one of the most reliable carbon-free energy sources.

Generation II refers to a category of commercial nuclear power reactors designed to be more cost-effective and reliable than the first generation of nuclear plants. They have a lifespan of approximately 40 years.

These nuclear reactors, also known as light water reactors, employ classic active safety elements, such as electrical or mechanical processes that can be launched automatically or by the operators themselves.

Some engineered systems, such as pressure relief valves, continue to operate and function even without operator control or auxiliary power.

This type of nuclear facility needs relatively large electrical grids and has a set of safety standards based on nuclear safety regulations. It generates enormous amounts of used fuel that must be disposed of in a high-level waste repository or reprocessed as part of a partially or fully closed fuel cycle.

Generation III nuclear power plants are basically Gen II plants with advanced evolutionary design improvements. These improvements include fuel technology, modularized construction, thermal efficiency, safety measures, and standardization of design.

Generation III has a longer operational life, usually 60 years, until the reactor pressure vessel requires replacement or a major overhaul. Unlike Generation I and II nuclear power reactors, Generation III nuclear plants are subject to Nuclear Regulatory Commission (NRC) rules.

One of the first Generation III power reactors was the Westinghouse AP-600, a 600 MW advanced pressurized water reactor. General Electric's Advanced Boiling Water Reactor (ABWR) was also designed and gained a design certification from the Nuclear Regulatory Commission (NRC).

Passive safety is a common element employed in Generation III nuclear facility designs. They do not require active controls or operational involvement in case of an accident. In the absence of electric power, they rely on natural convection, gravity, or resistance to high temperatures to keep things running smoothly.

In the Fukushima Daiichi disaster, the nuclear plant (Gen II) lost AC power and could not start the diesel generators necessary to cool the nuclear reactors. In a similar scenario, an advanced Generation III nuclear power plant would utilize natural circulation, gravity, and compressed gases to prevent overheating the containment and reactor core. Battery-powered systems would be utilized to maintain a secure shutdown until AC power is restored.

A core catcher is included in the design of several Generation III and III+ (evolutionary advancement of Gen III nuclear reactors) nuclear power plants. If the fuel cladding, reactor vessel systems, and associated piping melt, corium (fuel-containing material) will fall into a reactor core catcher, which can hold and cool the molten material. As a result, the nuclear plant is protected.

The control room must be equipped with a dependable control system to operate the nuclear facility safely. The 1979 Three Mile Island nuclear power plant catastrophe showed that the safety of employees has to be prioritized while designing a control room.

Generation III nuclear reactors, such as the Advanced Boiling Water Reactor (ABWR), U.S. Advanced Pressurized-Water Reactor (US-APWR), and European Pressurized Reactor (EPR), include entirely digital control rooms built on human factors to increase operator engagement with systems and make operations and activities more user friendly.

In the event of a radioactive release, control rooms are provided with separate air tanks that connect to clean air delivery lines.

The standardized design of Generation III nuclear plants reduces construction time, maintenance, and capital expenditures. They are easier to run and less susceptible to operational disruptions due to their simplified and robust architecture.

They have greater availability and a lifespan of approximately 60 years. They have a substantial grace period in case of incidents so that the plant requires no active intervention for around 72 hours following closure. They utilize fuel more effectively and generate less waste.

Video Credit: TED-Ed/YouTube.com

In the last 60 years or more, nuclear technology has advanced significantly. However, obstacles in safety, nonproliferation, the fuel cycle, and economics persist and may become increasingly difficult to overcome, particularly if breakthroughs in nuclear power reactor technology are not brought to market in the next two decades.

The demand for cheap and clean energy is growing with each passing year. As nuclear energy can generate low-carbon electric energy, it is the perfect replacement for fossil fuels. Hence, safe nuclear power production will establish the groundwork for unlimited clean energy.

Goldberg, S., & Rosner, R. (2011). Nuclear reactors: Generation to Generation. Cambridge: American academy of arts and sciences. Available from: https://www.ipen.br/biblioteca/slr/cel/0090.pdf

Ho, M., Obbard, E., Burr, P. A., & Yeoh, G. (2019). A review on the development of nuclear power reactors. Energy Procedia, 160, 459-466. https://doi.org/10.1016/j.egypro.2019.02.193

Munot, S., & Nayak, A. K. (2018). A review of core catchers for advanced reactors. Proceedings of the symposium on advanced sensors and modeling techniques for nuclear reactor safety. Available from https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=50073622

World Nuclear Association. (2021). Advanced Nuclear Power Reactors. [Online] World Nuclear Association. Available at: https://world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/advanced-nuclear-power-reactors.aspx (Accessed on 13 May 2022).

Disclaimer: The views expressed here are those of the author expressed in their private capacity and do not necessarily represent the views of AZoM.com Limited T/A AZoNetwork the owner and operator of this website. This disclaimer forms part of the Terms and conditions of use of this website.

NEBOSH certified Mechanical Engineer with 3 years of experience as a technical writer and editor. Owais is interested in occupational health and safety, computer hardware, industrial and mobile robotics. During his academic career, Owais worked on several research projects regarding mobile robots, notably the Autonomous Fire Fighting Mobile Robot. The designed mobile robot could navigate, detect and extinguish fire autonomously. Arduino Uno was used as the microcontroller to control the flame sensors' input and output of the flame extinguisher. Apart from his professional life, Owais is an avid book reader and a huge computer technology enthusiast and likes to keep himself updated regarding developments in the computer industry.

Please use one of the following formats to cite this article in your essay, paper or report:

Ali, Owais. (2022, June 10). How Does a Gen III Nuclear Plant Differ From a Gen II?. AZoCleantech. Retrieved on June 10, 2022 from https://www.azocleantech.com/article.aspx?ArticleID=1561.

Ali, Owais. "How Does a Gen III Nuclear Plant Differ From a Gen II?". AZoCleantech. 10 June 2022. <https://www.azocleantech.com/article.aspx?ArticleID=1561>.

Ali, Owais. "How Does a Gen III Nuclear Plant Differ From a Gen II?". AZoCleantech. https://www.azocleantech.com/article.aspx?ArticleID=1561. (accessed June 10, 2022).

Ali, Owais. 2022. How Does a Gen III Nuclear Plant Differ From a Gen II?. AZoCleantech, viewed 10 June 2022, https://www.azocleantech.com/article.aspx?ArticleID=1561.

Do you have a review, update or anything you would like to add to this article?

The Hiden LAS provides leak analysis of sealed packages.

Lightweight, recycled thermoset-plastic fillers produced and supplied by Composition Materials are made from 100% recycled materials.

Learn more about the service and calibration of Kipp & Zonen instruments.

AZoCleantech speaks to Professor Lucelia Rodrigues from the University of Nottingham about the EV-elocity project which enables the use of energy in electric vehicle batteries to power homes. The project could help decarbonize the energy grid and reduce emissions from transport and electricity produ

AZoCleantech speaks to John Hartley, CEO at Levidian, about the importance of green graphene and hydrogen for accelerating climate-smart technology within our society. Hartley speaks about Levidian's rapid decarbonization device called LOOP and its massive potential in the sector.

AZoCleantech speaks to Professor Matthew Jones from the University of Bath about his team's innovative and plastic waste recycling that will make upcycling a more cost-effective technique. Jones describes his team's process and its importance in accelerating a circular economy worldwide.

AZoCleantech.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022